Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)We prove a conjecture of Thomas Lam that the face posets of stratified spaces of planar resistor networks are shellable. These posets are called uncrossing partial orders. This shellability result combines with Lam's previous result that these same posets are Eulerian to imply that they are CW posets, namely that they are face posets of regular CW complexes. Certain subposets of uncrossing partial orders are shown to be isomorphic to type A Bruhat order intervals; our shelling is shown to coincide on these intervals with a Bruhat order shelling which was constructed by Matthew Dyer using a reflection order. Our shelling for uncrossing posets also yields an explicit shelling for each interval in the face posets of the edge product spaces of phylogenetic trees, namely in the Tuffley posets, by virtue of each interval in a Tuffley poset being isomorphic to an interval in an uncrossing poset. This yields a more explicit proof of the result of Gill, Linusson, Moulton and Steel that the CW decomposition of Moulton and Steel for the edge product space of phylogenetic trees is a regular CW decomposition.more » « less
-
A domain exchange map (DEM) is a dynamical system defined on a smooth Jordan domain which is a piecewise translation. We explain how to use cut-and-project sets to construct minimal DEMs. Specializing to the case in which the domain is a square and the cut-and-project set is associated to a Galois lattice, we construct an infinite family of DEMs in which each map is associated to a Pisot–Vijayaraghavan (PV) number. We develop a renormalization scheme for these DEMs. Certain DEMs in the family can be composed to create multistage, renormalizable DEMs.more » « less
An official website of the United States government
